Жизнь - игра. Давайте ж поиграем.
Поговорим о космическом оружии. Искала инфу для своей ролёвки (newcolonialage.ucoz.ru/forum/) , и нашла интересную статью. Ну как не разместить её в дневнике. Интересно же.
galspace.spb.ru/index67-2.html
Вначале натолкнулась на лазеры и бластеры. Эт самое популярное оружие, насколько вы помните во всех космических фильмах. Так вот что про них говорится на этой замечательной страничке:
Что, собственно, вылетает из бластеров и лучевых пушек? Когда говорят о «лучах», то обычно имеют в виду электромагнитные волны разной частоты, а также потоки элементарных частиц или ядер атомов. Сами эти физические явления были известны еще до Первой мировой войны, и позднее ничего существенного открыто не было, но первый лазер как идеальный концентратор энергии появился только в 1960 году.
Волны радиодиапазона малопригодны в качестве оружия - ни ДВ-, ни СВ-, ни КВ-волны практически не влияют ни на человека, ни на технику, хотя вполне в состоянии портить электронику. Так, например, июль 2003 года, столь богатый в Москве на грозы, оказался фатальным для множества линий и устройств связи. Причем аппаратура выходила из строя не только из-за прямых попаданий молний, но и благодаря мощному электромагнитному излучению вблизи грозового разряда.
читать дальше Но - чем короче длина волны, тем это влияние становится заметнее, и, наконец, в диапазоне СВЧ радиоволны уже начинают обнадеживать разработчиков вооружений. При небольшой интенсивности СВЧ-излучение работает во вполне мирных целях - в кабинетах физиотерапии, а при более высокой - помогая готовить пищу на кухне в СВЧ-печи.
Так что же мешает «вывернуть» СВЧ-печь наизнанку, направив излучатель в сторону противника? На Земле подобное оружие вряд ли будет эффективным - атмосфера, особенно запыленная или с большим содержанием влаги, быстро гасит излучение. Но в космосе - почему нет? Кто видел, как взрывается яйцо, неосмотрительно положенное в микроволновку, тот легко представит, что произойдет с головами вражеских астронавтов... Бесспорно, СВЧ-лучи способны передавать энергию через пространство - и в этом качестве они уже используются, но, поскольку они слишком длинноволновые, для их фокусировки нужны слишком большие отражатели.
Фантасты, конечно, не прошли мимо них, но оценили как нечто вполне мирное: на СВЧ-излучение возлагают надежду как на способ передачи энергии на Землю с солнечных космических электростанций. Однако достигнутые уже сегодня мощности СВЧ-излучателей достаточны для обеспечения не летального - просто обжигающего и вызывающего болевой шок - воздействия на людей на вполне приемлемых для полиции расстояниях. И называют такие направленные излучатели мазерами. Так что, несмотря на то что на близких расстояниях СВЧ-лучи - это вполне реальная сила, издалека с их помощью каши не сваришь.
Энергию переносят все электромагнитные волны, но инфракрасные, световые, ультрафиолетовые лучи еще и достаточно легко фокусируются. Инфракрасный свет, например, преломляется в линзах и призмах и отражается зеркалами почти так же хорошо, как и обычный. Ультрафиолетовое излучение достаточно сильно влияет на живые организмы и полимеры, но оно заметно поглощается воздухом и стеклом.
Чем короче волны, тем ближе мы к самому смертоносному - рентгеновскому диапазону. Вот это уже серьезно - невидимое и неслышимое оружие. При большой интенсивности рентгеновский луч - действительно «луч смерти», и защититься от него практически невозможно. Свинцовая обшивка в расчет не берется - она не для космической техники. Примерно то же относится и к еще более коротковолновому, гамма-излучению.
Известно множество конструкций лазеров: твердотельные (самый первый лазер на кристалле рубина), полупроводниковые (лазерная указка и считывающая головка в CD и DVD - проигрывателях), газовые (школьный гелий - неоновый и технологический на углекислом газе, который режет металл). Есть также лазеры на свободных электронах, в которых излучение генерируют разогнанные в ускорителе электроны, пролетающие через переменное магнитное поле.
Но как бы точно ни были сделаны фокусирующие зеркала, луч все равно, увы, расходится. И степень этого расхождения прямо пропорциональна длине волны излучения, поделенной на диаметр пучка. Получается, что, чем волна короче, а пучок шире, тем расхождение меньше. А для того чтобы луч был эффективным, он должен быть тонким, иначе вся мощность рассеивается по слишком большой площади.
Основной военный эффект от лазерного луча - чисто тепловой, кванты света должны просто поглотиться поражаемым объектом и нагреть его до такого состояния, чтобы он пришел в негодность. Для того что-бы оказать воздействие на цель (металлический корпус корабля или спутника), к ней должно дойти некоторое количество джоулей. Сколько именно - сказать трудно, и даже если это известно, то громко об этом, скорее всего, говорить не будут. И все же, по-видимому, это не менее нескольких десятков или даже сотен мегаджоулей - для таких уязвимых объектов, как ракета с полным топливным баком, и не меньше тысяч мегаджоулей - для ядерных боеголовок, которые успешно преодолевают плотные слои атмосферы, не теряя работоспособности. Для лазера непрерывного действия, даже без учета расходимости луча, речь уже идет о мощностях в тысячи мегаватт. Но тогда получается, что мощность источника энергии должна составлять миллионы киловатт! И это действительно так.
К тому же постоянно светить лазером по пустому безвоздушному пространству бессмысленно - сначала нужно навести его на цель и только после этого «врубать» на полную мощность. Реактор же плохо работает в таком «рваном» режиме. В бою, если вражеские боеголовки летят сотнями, а на выделение ложных целей нет времени, палить лазеру придется достаточно часто, и именно по этой причине большинство разрабатываемых боевых лазеров - химические. Горение газообразного топлива (помните пирамидки инженера Гарина?) приводит внутреннюю среду лазера в возбужденное состояние, и она начинает генерировать мощное электромагнитное излучение. Поэтому действовать придется следующим образом - произвели выстрел, продули систему, подали новую порцию реагентов и только после этого - новый залп...
И все же, предположим, что энергия найдена: к примеру, 1 тонна топлива на 1 выстрел. Как известно, обычная схема работы лазера предусматривает «накачку» рабочей среды (кристалла или газа) энергией до определенного уровня и, когда происходит скачок, накопленная энергия разряжается лучом света определенной длины волны. Но куда деваться той энергии, которая не ушла к цели вместе с лучом? Так вот она большей частью выделится в стреляющем устройстве в виде тепла. Таким образом, к цели уйдет только 40%, но вот остальные 60% останутся у нас. И потому, даже повредив вражеский корабль, мы можем легко испарить и свой собственный. Не случайно даже в гораздо менее мощных земных установках используется проточное водяное охлаждение не только зеркал, но и рабочего объема лазера.
Впрочем, стрельба из космоса по наземным или атмосферным целям в определенных условиях может быть и эффективной. Лазерный луч в газе может подвергаться «самофокусировке», когда нагреваемый лазером атмосферный канал становится своего рода световодом. Луч способен сфокусироваться и в точку, которая может стать источником рентгеновского излучения благодаря колоссальному нагреву в области самофокусировки. Тут главное - так использовать этот эффект, чтобы такая точка возникла в нужное время и в нужном месте...
Есть и еще проблема - существующие системы фокусировки луча предусматривают использование отражающих зеркал. Так что же помешает противнику использовать такое же зеркальное покрытие в качестве защиты? Не говоря уж о простом вращении боеголовки, в десятки раз понижающем эффективность лучевого оружия.
И все же пытливую изобретательскую мысль трудно остановить. Нет энергии - давайте использовать для накачки боевого лазера ядерный взрыв небольшой мощности. Идея может показаться странной - а как же тогда свой корабль? Но, как мы уже выяснили, компактный стреляющий лазер все равно испарится, испустив луч, опасный для вражеского корабля. А потому он и должен быть... одноразовым. Естественно, использовать его на бopтy станции нельзя - значит, стреляющие устройства должны быть выведены на безопасное расстояние.
Особый интерес в этом отношении представляют коротковолновые, рентгеновские лазеры - чисто теоретически было показано, что их можно создать и что рентгеновский луч вполне можно сгенерировать. Американцы проводили испытания такого рода устройств у себя на полигоне в Неваде, правда, научное сообщество скептически отнеслось не только к полученным экспериментальным результатам, но и к перспективе скорого появления такого рода ядерного вооружения.
Что касается потоков заряженных частиц - электронов, ионов или нейтральных атомов, тут возникает та же проблема, что и с лазерами: как их создавать и как концентрировать? Для их разгона на Земле используются циклопические сооружения, но как их вывести в космос? И тем не менее космические ускорители разрабатывают, поскольку КПД таких систем может быть существенно больше, чем у лазеров, а поражающая способность - выше, поскольку отразить поток протонов нельзя уже никаким покрытием. Единственная серьезная проблема - это расходимость. Причем на больших расстояниях магнитное поле Земли так отклоняет заряженные частицы, что ни о каком прицельном огне не может быть и речи. Поэтому заряженные пучки надо сначала сделать нейтральными, вернув ядрам отобранные у них электроны или создав устойчивый и компактный протонно - электронный клубок, способный лететь, не разлетаясь.
На близких дистанциях опять все совсем просто - мощный поток ускоренных электронов легко прожигает не только алюминиевую, но и стальную обшивку. А вот на дистанции в несколько десятков километров - уже нет. Да и работает такое оружие только в вакууме - земная атмосфера очень эффективно тормозит и рассеивает потоки любых быстродвижущихся частиц.
Однако в случае развертывания космических вооружений работа ускорителям, по всей видимости, найдется - они помогут отличать истинные боеголовки от ложных, а значит, упростят работу любых систем ПРО - будь то лазеры или обычные ракеты.
Как ни обидно это слышать любителям кинофантастики, но пока единственное реальное оружие для стрельбы в космосе - обычные ружья и пушки
А как себя ведут в космосе порох и взрывчатка? Оказывается, вполне нормально. Взрывчатка в космосе используется часто: как правило, разделяющиеся ступени и блоки ракет соединяются так называемыми пироболтами, содержащими небольшой заряд ВВ и беспрепятственно взрывающимися. Также ничего не препятствует и стрельбе обычными
патронами - они герметичны, да и необходимый для горения пороха окислитель содержится в нем самом. Более того, в чем-то космическое оружие может быть даже проще земного. Снаряду, например, не обязательно иметь обтекаемую форму, так же как и пушкам не нужны нарезные стволы - ведь в вакууме стабилизация снаряду не важна. Так же не всегда нужны взрыватель и взрывчатая начинка, поскольку при космических скоростях соударения кинетическая энергия снаряда превышает энергию, содержащуюся во взрывчатке той же массы.
В космосе при столкновении предмета (все равно - снаряда или метеорита) с кораблем снаряд сам превращается в сверхмощную взрывчатку. А вот просто взрыв, даже в непосредственной близости от цели, не так эффективен. 3вуковые волны в вакууме не распространяются, да и ударной волны там нет. В космосе даже атомная бомба значительно теряет в своей разрушительной силе...
Так из чего следует делать снаряды или картечь для космических сражений? Идеально подходят используемые в атмосферных бронебойных снарядах обедненный уран или карбид вольфрама - маленький и тяжелый снаряд с высокой температурой плавления и достаточной степенью твердости меньше тормозится. Хотя в космосе гораздо больше, чем материал снаряда, важны масса и скорость.
Так что обычная винтовка все еще эффективнее лазера. Эффективнее энергетически - да, но не лучше. Существует то, из-за чего поиски в области лучевого оружия не прекратятся: луч достигает цели практически мгновенно и движется прямолинейно. Космические объекты движутся с космическими скоростями - первая космическая составляет 8 км/с, вторая - 11 км/с, а снаряд пушки - всего около 1 км/с. К тому же снаряд подвержен гравитации (по крайней мере, недалеко от планеты), и его траекторию надо рассчитывать.
Почему же снаряд нельзя разогнать, засыпав в гильзу побольше пороха? Потому что скорость снаряда ограничена скоростью движения пороховых газов, а они имеют достаточно большую молекулярную массу. Поэтому толкать снаряд нужно ударной волной какого-либо легкого газа, например гелия. И действительно, такие заряды с гелиевым «поршнем» позволяют достичь скоростей до 5 км/с. Но лучше всего это получается у так называемых «рельсотронов», обходящихся совсем без пороха.
Что же будет, если из дула орудия со скоростью несколько километров в секунду вылетит увесистый снаряд? В космосе не на что упереть станину орудия, и, получив импульс отдачи, космический корабль, с которого был произведен выстрел, начнет вращаться - не быстро, но безостановочно, и дальнейшая стрельба будет невозможной до тех пор, пока ориентация не будет восстановлена. Значит, орудие надо разместить так, чтобы вектор силы отдачи проходил через центр масс корабля. Однако даже простой поворот орудия в нужном направлении приводит к тому, что корабль разворачивается в обратном, хотя и на меньший угол. Получается, что стрелять лучше ракетами.
Боевые ракеты для космоса могут быть непохожими на те, к которым мы привыкли. В вакууме не нужна удлиненная и обтекаемая форма - двигатели, боевая часть и блоки управления могут быть скомпонованы как угодно, только от перегрева их нужно защищать каким-то корпусом, который не слетит при ускорении. Рули и хвостовое оперение - бесполезны, стабилизация и направление на цель могут производиться только специальными реактивными двигателями. Такая боевая ракета оказывается сопоставимой по сложности с искусственным спутником.
Известный принцип преемственности технических разработок и законы физики привели к тому, что электромагнитные пушки - «рельсотроны» достаточно сильно напоминают привычные, длинноствольные. Правда, огромные конденсаторные блоки, накапливающие необходимую для выстрела энергию, однозначно выдают такую конструкцию, как высокотехнологичное и электротехническое сооружение. В «рельсотроне» снаряд ускоряется до космических скоростей плотным облачком токопроводящей плазмы.
У столь скоростного снаряда есть одно большое преимущество перед его «медленными» собратьями - поскольку его скорость превышает скорость звука во всех материалах, то он совсем по-другому взаимодействует с мишенью, просто прожигая в ней маленькую смертельную дырочку. Такой снаряд не могут остановить ни многослойное покрытие с обедненным ураном и пластиком, ни активная взрывчатка. Сверхскоростной снаряд протекает сквозь объект так быстро, что ни пассивная, ни активная защита помочь не могут.
Единственная проблема - это разогнать достаточно большое тело до достаточно большой скорости, чтобы его энергия была никак не меньше тысячи мегаджоулей, иначе ядерную боеголовку не пробить ни при какой скорости. Ну и, конечно, как для любой другой, для электромагнитной пушки крайне важно, чтобы «прицел не был сбит», поскольку попасть в муху со 100 метров гораздо проще, чем в боеголовку со 100 км. Поэтому и ведутся разработки активных снарядов, которые способны на конечном участке траектории «поймать» цель, точно щелкнув ее по носу.
galspace.spb.ru/index67-2.html
Вначале натолкнулась на лазеры и бластеры. Эт самое популярное оружие, насколько вы помните во всех космических фильмах. Так вот что про них говорится на этой замечательной страничке:
Что, собственно, вылетает из бластеров и лучевых пушек? Когда говорят о «лучах», то обычно имеют в виду электромагнитные волны разной частоты, а также потоки элементарных частиц или ядер атомов. Сами эти физические явления были известны еще до Первой мировой войны, и позднее ничего существенного открыто не было, но первый лазер как идеальный концентратор энергии появился только в 1960 году.
Волны радиодиапазона малопригодны в качестве оружия - ни ДВ-, ни СВ-, ни КВ-волны практически не влияют ни на человека, ни на технику, хотя вполне в состоянии портить электронику. Так, например, июль 2003 года, столь богатый в Москве на грозы, оказался фатальным для множества линий и устройств связи. Причем аппаратура выходила из строя не только из-за прямых попаданий молний, но и благодаря мощному электромагнитному излучению вблизи грозового разряда.
читать дальше Но - чем короче длина волны, тем это влияние становится заметнее, и, наконец, в диапазоне СВЧ радиоволны уже начинают обнадеживать разработчиков вооружений. При небольшой интенсивности СВЧ-излучение работает во вполне мирных целях - в кабинетах физиотерапии, а при более высокой - помогая готовить пищу на кухне в СВЧ-печи.
Так что же мешает «вывернуть» СВЧ-печь наизнанку, направив излучатель в сторону противника? На Земле подобное оружие вряд ли будет эффективным - атмосфера, особенно запыленная или с большим содержанием влаги, быстро гасит излучение. Но в космосе - почему нет? Кто видел, как взрывается яйцо, неосмотрительно положенное в микроволновку, тот легко представит, что произойдет с головами вражеских астронавтов... Бесспорно, СВЧ-лучи способны передавать энергию через пространство - и в этом качестве они уже используются, но, поскольку они слишком длинноволновые, для их фокусировки нужны слишком большие отражатели.
Фантасты, конечно, не прошли мимо них, но оценили как нечто вполне мирное: на СВЧ-излучение возлагают надежду как на способ передачи энергии на Землю с солнечных космических электростанций. Однако достигнутые уже сегодня мощности СВЧ-излучателей достаточны для обеспечения не летального - просто обжигающего и вызывающего болевой шок - воздействия на людей на вполне приемлемых для полиции расстояниях. И называют такие направленные излучатели мазерами. Так что, несмотря на то что на близких расстояниях СВЧ-лучи - это вполне реальная сила, издалека с их помощью каши не сваришь.
Энергию переносят все электромагнитные волны, но инфракрасные, световые, ультрафиолетовые лучи еще и достаточно легко фокусируются. Инфракрасный свет, например, преломляется в линзах и призмах и отражается зеркалами почти так же хорошо, как и обычный. Ультрафиолетовое излучение достаточно сильно влияет на живые организмы и полимеры, но оно заметно поглощается воздухом и стеклом.
Чем короче волны, тем ближе мы к самому смертоносному - рентгеновскому диапазону. Вот это уже серьезно - невидимое и неслышимое оружие. При большой интенсивности рентгеновский луч - действительно «луч смерти», и защититься от него практически невозможно. Свинцовая обшивка в расчет не берется - она не для космической техники. Примерно то же относится и к еще более коротковолновому, гамма-излучению.
Известно множество конструкций лазеров: твердотельные (самый первый лазер на кристалле рубина), полупроводниковые (лазерная указка и считывающая головка в CD и DVD - проигрывателях), газовые (школьный гелий - неоновый и технологический на углекислом газе, который режет металл). Есть также лазеры на свободных электронах, в которых излучение генерируют разогнанные в ускорителе электроны, пролетающие через переменное магнитное поле.
Но как бы точно ни были сделаны фокусирующие зеркала, луч все равно, увы, расходится. И степень этого расхождения прямо пропорциональна длине волны излучения, поделенной на диаметр пучка. Получается, что, чем волна короче, а пучок шире, тем расхождение меньше. А для того чтобы луч был эффективным, он должен быть тонким, иначе вся мощность рассеивается по слишком большой площади.
Основной военный эффект от лазерного луча - чисто тепловой, кванты света должны просто поглотиться поражаемым объектом и нагреть его до такого состояния, чтобы он пришел в негодность. Для того что-бы оказать воздействие на цель (металлический корпус корабля или спутника), к ней должно дойти некоторое количество джоулей. Сколько именно - сказать трудно, и даже если это известно, то громко об этом, скорее всего, говорить не будут. И все же, по-видимому, это не менее нескольких десятков или даже сотен мегаджоулей - для таких уязвимых объектов, как ракета с полным топливным баком, и не меньше тысяч мегаджоулей - для ядерных боеголовок, которые успешно преодолевают плотные слои атмосферы, не теряя работоспособности. Для лазера непрерывного действия, даже без учета расходимости луча, речь уже идет о мощностях в тысячи мегаватт. Но тогда получается, что мощность источника энергии должна составлять миллионы киловатт! И это действительно так.
К тому же постоянно светить лазером по пустому безвоздушному пространству бессмысленно - сначала нужно навести его на цель и только после этого «врубать» на полную мощность. Реактор же плохо работает в таком «рваном» режиме. В бою, если вражеские боеголовки летят сотнями, а на выделение ложных целей нет времени, палить лазеру придется достаточно часто, и именно по этой причине большинство разрабатываемых боевых лазеров - химические. Горение газообразного топлива (помните пирамидки инженера Гарина?) приводит внутреннюю среду лазера в возбужденное состояние, и она начинает генерировать мощное электромагнитное излучение. Поэтому действовать придется следующим образом - произвели выстрел, продули систему, подали новую порцию реагентов и только после этого - новый залп...
И все же, предположим, что энергия найдена: к примеру, 1 тонна топлива на 1 выстрел. Как известно, обычная схема работы лазера предусматривает «накачку» рабочей среды (кристалла или газа) энергией до определенного уровня и, когда происходит скачок, накопленная энергия разряжается лучом света определенной длины волны. Но куда деваться той энергии, которая не ушла к цели вместе с лучом? Так вот она большей частью выделится в стреляющем устройстве в виде тепла. Таким образом, к цели уйдет только 40%, но вот остальные 60% останутся у нас. И потому, даже повредив вражеский корабль, мы можем легко испарить и свой собственный. Не случайно даже в гораздо менее мощных земных установках используется проточное водяное охлаждение не только зеркал, но и рабочего объема лазера.
Впрочем, стрельба из космоса по наземным или атмосферным целям в определенных условиях может быть и эффективной. Лазерный луч в газе может подвергаться «самофокусировке», когда нагреваемый лазером атмосферный канал становится своего рода световодом. Луч способен сфокусироваться и в точку, которая может стать источником рентгеновского излучения благодаря колоссальному нагреву в области самофокусировки. Тут главное - так использовать этот эффект, чтобы такая точка возникла в нужное время и в нужном месте...
Есть и еще проблема - существующие системы фокусировки луча предусматривают использование отражающих зеркал. Так что же помешает противнику использовать такое же зеркальное покрытие в качестве защиты? Не говоря уж о простом вращении боеголовки, в десятки раз понижающем эффективность лучевого оружия.
И все же пытливую изобретательскую мысль трудно остановить. Нет энергии - давайте использовать для накачки боевого лазера ядерный взрыв небольшой мощности. Идея может показаться странной - а как же тогда свой корабль? Но, как мы уже выяснили, компактный стреляющий лазер все равно испарится, испустив луч, опасный для вражеского корабля. А потому он и должен быть... одноразовым. Естественно, использовать его на бopтy станции нельзя - значит, стреляющие устройства должны быть выведены на безопасное расстояние.
Особый интерес в этом отношении представляют коротковолновые, рентгеновские лазеры - чисто теоретически было показано, что их можно создать и что рентгеновский луч вполне можно сгенерировать. Американцы проводили испытания такого рода устройств у себя на полигоне в Неваде, правда, научное сообщество скептически отнеслось не только к полученным экспериментальным результатам, но и к перспективе скорого появления такого рода ядерного вооружения.
Что касается потоков заряженных частиц - электронов, ионов или нейтральных атомов, тут возникает та же проблема, что и с лазерами: как их создавать и как концентрировать? Для их разгона на Земле используются циклопические сооружения, но как их вывести в космос? И тем не менее космические ускорители разрабатывают, поскольку КПД таких систем может быть существенно больше, чем у лазеров, а поражающая способность - выше, поскольку отразить поток протонов нельзя уже никаким покрытием. Единственная серьезная проблема - это расходимость. Причем на больших расстояниях магнитное поле Земли так отклоняет заряженные частицы, что ни о каком прицельном огне не может быть и речи. Поэтому заряженные пучки надо сначала сделать нейтральными, вернув ядрам отобранные у них электроны или создав устойчивый и компактный протонно - электронный клубок, способный лететь, не разлетаясь.
На близких дистанциях опять все совсем просто - мощный поток ускоренных электронов легко прожигает не только алюминиевую, но и стальную обшивку. А вот на дистанции в несколько десятков километров - уже нет. Да и работает такое оружие только в вакууме - земная атмосфера очень эффективно тормозит и рассеивает потоки любых быстродвижущихся частиц.
Однако в случае развертывания космических вооружений работа ускорителям, по всей видимости, найдется - они помогут отличать истинные боеголовки от ложных, а значит, упростят работу любых систем ПРО - будь то лазеры или обычные ракеты.
Как ни обидно это слышать любителям кинофантастики, но пока единственное реальное оружие для стрельбы в космосе - обычные ружья и пушки
А как себя ведут в космосе порох и взрывчатка? Оказывается, вполне нормально. Взрывчатка в космосе используется часто: как правило, разделяющиеся ступени и блоки ракет соединяются так называемыми пироболтами, содержащими небольшой заряд ВВ и беспрепятственно взрывающимися. Также ничего не препятствует и стрельбе обычными
патронами - они герметичны, да и необходимый для горения пороха окислитель содержится в нем самом. Более того, в чем-то космическое оружие может быть даже проще земного. Снаряду, например, не обязательно иметь обтекаемую форму, так же как и пушкам не нужны нарезные стволы - ведь в вакууме стабилизация снаряду не важна. Так же не всегда нужны взрыватель и взрывчатая начинка, поскольку при космических скоростях соударения кинетическая энергия снаряда превышает энергию, содержащуюся во взрывчатке той же массы.
В космосе при столкновении предмета (все равно - снаряда или метеорита) с кораблем снаряд сам превращается в сверхмощную взрывчатку. А вот просто взрыв, даже в непосредственной близости от цели, не так эффективен. 3вуковые волны в вакууме не распространяются, да и ударной волны там нет. В космосе даже атомная бомба значительно теряет в своей разрушительной силе...
Так из чего следует делать снаряды или картечь для космических сражений? Идеально подходят используемые в атмосферных бронебойных снарядах обедненный уран или карбид вольфрама - маленький и тяжелый снаряд с высокой температурой плавления и достаточной степенью твердости меньше тормозится. Хотя в космосе гораздо больше, чем материал снаряда, важны масса и скорость.
Так что обычная винтовка все еще эффективнее лазера. Эффективнее энергетически - да, но не лучше. Существует то, из-за чего поиски в области лучевого оружия не прекратятся: луч достигает цели практически мгновенно и движется прямолинейно. Космические объекты движутся с космическими скоростями - первая космическая составляет 8 км/с, вторая - 11 км/с, а снаряд пушки - всего около 1 км/с. К тому же снаряд подвержен гравитации (по крайней мере, недалеко от планеты), и его траекторию надо рассчитывать.
Почему же снаряд нельзя разогнать, засыпав в гильзу побольше пороха? Потому что скорость снаряда ограничена скоростью движения пороховых газов, а они имеют достаточно большую молекулярную массу. Поэтому толкать снаряд нужно ударной волной какого-либо легкого газа, например гелия. И действительно, такие заряды с гелиевым «поршнем» позволяют достичь скоростей до 5 км/с. Но лучше всего это получается у так называемых «рельсотронов», обходящихся совсем без пороха.
Что же будет, если из дула орудия со скоростью несколько километров в секунду вылетит увесистый снаряд? В космосе не на что упереть станину орудия, и, получив импульс отдачи, космический корабль, с которого был произведен выстрел, начнет вращаться - не быстро, но безостановочно, и дальнейшая стрельба будет невозможной до тех пор, пока ориентация не будет восстановлена. Значит, орудие надо разместить так, чтобы вектор силы отдачи проходил через центр масс корабля. Однако даже простой поворот орудия в нужном направлении приводит к тому, что корабль разворачивается в обратном, хотя и на меньший угол. Получается, что стрелять лучше ракетами.
Боевые ракеты для космоса могут быть непохожими на те, к которым мы привыкли. В вакууме не нужна удлиненная и обтекаемая форма - двигатели, боевая часть и блоки управления могут быть скомпонованы как угодно, только от перегрева их нужно защищать каким-то корпусом, который не слетит при ускорении. Рули и хвостовое оперение - бесполезны, стабилизация и направление на цель могут производиться только специальными реактивными двигателями. Такая боевая ракета оказывается сопоставимой по сложности с искусственным спутником.
Известный принцип преемственности технических разработок и законы физики привели к тому, что электромагнитные пушки - «рельсотроны» достаточно сильно напоминают привычные, длинноствольные. Правда, огромные конденсаторные блоки, накапливающие необходимую для выстрела энергию, однозначно выдают такую конструкцию, как высокотехнологичное и электротехническое сооружение. В «рельсотроне» снаряд ускоряется до космических скоростей плотным облачком токопроводящей плазмы.
У столь скоростного снаряда есть одно большое преимущество перед его «медленными» собратьями - поскольку его скорость превышает скорость звука во всех материалах, то он совсем по-другому взаимодействует с мишенью, просто прожигая в ней маленькую смертельную дырочку. Такой снаряд не могут остановить ни многослойное покрытие с обедненным ураном и пластиком, ни активная взрывчатка. Сверхскоростной снаряд протекает сквозь объект так быстро, что ни пассивная, ни активная защита помочь не могут.
Единственная проблема - это разогнать достаточно большое тело до достаточно большой скорости, чтобы его энергия была никак не меньше тысячи мегаджоулей, иначе ядерную боеголовку не пробить ни при какой скорости. Ну и, конечно, как для любой другой, для электромагнитной пушки крайне важно, чтобы «прицел не был сбит», поскольку попасть в муху со 100 метров гораздо проще, чем в боеголовку со 100 км. Поэтому и ведутся разработки активных снарядов, которые способны на конечном участке траектории «поймать» цель, точно щелкнув ее по носу.